Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Nat Commun ; 15(1): 3286, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627398

RESUMO

Food availability and usage is a major adaptive force for the successful survival of animals in nature, yet little is known about the specific signals that activate the host digestive system to allow for the consumption of varied foods. Here, by using a food digestion system in C. elegans, we discover that bacterial peptidoglycan (PGN) is a unique food signal that activates animals to digest inedible food. We identified that a glycosylated protein, Bacterial Colonization Factor-1 (BCF-1), in the gut interacts with bacterial PGN, leading to the inhibition of the mitochondrial unfolded protein response (UPRmt) by regulating the release of Neuropeptide-Like Protein (NLP-3). Interestingly, activating UPRmt was found to hinder food digestion, which depends on the innate immune p38 MAPK/PMK-1 pathway. Conversely, inhibiting PMK-1 was able to alleviate digestion defects in bcf-1 mutants. Furthermore, we demonstrate that animals with digestion defects experience reduced natural adaptation capabilities. This study reveals that PGN-BCF-1 interaction acts as "good-food signal" to promote food digestion and animal growth, which facilitates adaptation of the host animals by increasing ability to consume a wide range of foods in their natural environment.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Peptidoglicano/metabolismo , Adaptação ao Hospedeiro
2.
Nat Commun ; 15(1): 1933, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431601

RESUMO

Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.


Assuntos
Estudo de Associação Genômica Ampla , Adaptação ao Hospedeiro , Virulência/genética , Polimorfismo Genético , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
PLoS One ; 19(2): e0294570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349924

RESUMO

Johne's disease (JD), caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a global burden for livestock producers and has an association with Crohn's disease in humans. Within MAP there are two major lineages, S/Type I/TypeIII and C/Type II, that vary in phenotype including culturability, host preference and virulence. These lineages have been identified using the IS1311 element, which contains a conserved, single nucleotide polymorphism. IS1311 and the closely related IS1245 element belong to the IS256 family of insertion sequences, are dispersed throughout M. avium taxa but remain poorly characterised. To investigate the distribution and diversity of IS1311 in MAP, 805 MAP genomes were collated from public databases. IS1245 was absent, while IS1311 sequence, copy number and insertion loci were conserved between MAP S lineages and varied within the MAP C lineage. One locus was specific to the S strains, which contained nine IS1311 copies. In contrast, C strains contained either seven or eight IS1311 loci. Most insertion loci were associated with the boundaries of homologous regions that had undergone genome rearrangement between the MAP lineages, suggesting that this sequence may be a driver of recombination. Phylogenomic geographic clustering of MAP subtypes was demonstrated for the first time, at continental scale, and indicated that there may have been recent MAP transmission between Europe and North America, in contrast to Australia where importation of live ruminants is generally prohibited. This investigation confirmed the utility of IS1311 typing in epidemiological studies and resolved anomalies in past studies. The results shed light on potential mechanisms of niche/host adaptation, virulence of MAP and global transmission dynamics.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Humanos , Mycobacterium avium subsp. paratuberculosis/genética , Adaptação ao Hospedeiro , Paratuberculose/microbiologia , Polimorfismo de Nucleotídeo Único , Ruminantes/genética , Elementos de DNA Transponíveis
4.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385549

RESUMO

Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.


Assuntos
Recombinação Homóloga , Adaptação ao Hospedeiro , Pectobacterium , Teorema de Bayes , Bactérias , Evolução Molecular
5.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396905

RESUMO

Chronic rhinosinusitis (CRS) is a multifactorial infection of the nasal cavity and sinuses. In this study, nasal swabs from control donors (N = 128) and patients with CRS (N = 246) were analysed. Culture methods and metagenomics revealed no obvious differences in the composition of the bacterial communities between the two groups. However, at the functional level, several metabolic pathways were significantly enriched in the CRS group compared to the control group. Pathways such as carbohydrate transport metabolism, ATP synthesis, cofactors and vitamins, photosynthesis and transcription were highly enriched in CRS. In contrast, pathways related to lipid metabolism were more representative in the control microbiome. As S. aureus is one of the main species found in the nasal cavity, staphylococcal isolates from control and CRS samples were analysed by microarray and functional assays. Although no significant genetic differences were detected by microarray, S. aureus from CRS induced less cytotoxicity to lung cells and lower rates of glycolysis in host cells than control isolates. These results suggest the differential modulation of staphylococcal virulence by the environment created by other microorganisms and their interactions with host cells in control and CRS samples. These changes were reflected in the differential expression of cytokines and in the expression of Agr, the most important quorum-sensing regulator of virulence in S. aureus. In addition, the CRS isolates remained stable in their cytotoxicity, whereas the cytotoxic activity of S. aureus isolated from control subjects decreased over time during in vitro passage. These results suggest that host factors influence the virulence of S. aureus and promote its adaptation to the nasal environment during CRS.


Assuntos
Seios Paranasais , Rinite , 60523 , Sinusite , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Adaptação ao Hospedeiro , Sinusite/microbiologia , Infecções Estafilocócicas/microbiologia , Doença Crônica , Rinite/microbiologia
6.
J Bacteriol ; 206(2): e0034023, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38214528

RESUMO

Glycerol utilization as a carbohydrate source by Borreliella burgdorferi, the Lyme disease spirochete, is critical for its successful colonization and persistence in the tick vector. The expression of the glpFKD (glp) operon, which encodes proteins for glycerol uptake/utilization, must be tightly regulated during the enzootic cycle of B. burgdorferi. Previous studies have established that the second messenger cyclic di-GMP (c-di-GMP) is required for the activation of glp expression, while an alternative sigma factor RpoS acts as a negative regulator for glp expression. In the present study, we report identification of a cis element within the 5´ untranslated region of glp that exerts negative regulation of glp expression. Further genetic screen of known and predicted DNA-binding proteins encoded in the genome of B. burgdorferi uncovered that overexpressing Borrelia host adaptation regulator (BadR), a known global regulator, dramatically reduced glp expression. Similarly, the badR mutant significantly increased glp expression. Subsequent electrophoretic mobility shift assay analyses demonstrated that BadR directly binds to this cis element, thereby repressing glp independent of RpoS-mediated repression. The efficiency of BadR binding was further assessed in the presence of c-di-GMP and various carbohydrates. This finding highlights multi-layered positive and negative regulatory mechanisms employed by B. burgdorferi to synchronize glp expression throughout its enzootic cycle.IMPORTANCEBorreliella burgdorferi, the Lyme disease pathogen, must modulate its gene expression differentially to adapt successfully to its two disparate hosts. Previous studies have demonstrated that the glycerol uptake and utilization operon, glpFKD, plays a crucial role in spirochetal survival within ticks. However, the glpFKD expression must be repressed when B. burgdorferi transitions to the mammalian host. In this study, we identified a specific cis element responsible for the repression of glpFKD. We further pinpointed Borrelia host adaptation regulator as the direct binding protein to this cis element, thereby repressing glpFKD expression. This discovery paves the way for a deeper exploration of how zoonotic pathogens sense distinct hosts and switch their carbon source utilization during transmission.


Assuntos
Borrelia burgdorferi , Borrelia , Doença de Lyme , Carrapatos , Animais , Borrelia/genética , Borrelia/metabolismo , Glicerol/metabolismo , Adaptação ao Hospedeiro , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Óperon , Regulação Bacteriana da Expressão Gênica , Mamíferos/genética , Mamíferos/metabolismo
7.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270515

RESUMO

African swine fever (ASF) is a severe haemorrhagic disease caused by the African swine fever virus (ASFV), transmitted by ticks, resulting in high mortality among domestic pigs and wild boars. The global spread of ASFV poses significant economic threats to the swine industry. This study employs diverse analytical methods to explore ASFV's evolution and host adaptation, focusing on codon usage patterns and associated factors. Utilizing phylogenetic analysis methods including neighbour-joining and maximum-likelihood, 64 ASFV strains were categorized into four clades. Codon usage bias (CUB) is modest in ASFV coding sequences. This research identifies multiple factors - such as nucleotide composition, mutational pressures, natural selection and geographical diversity - contributing to the formation of CUB in ASFV. Analysis of relative synonymous codon usage reveals CUB variations within clades and among ASFVs and their hosts. Both Codon Adaptation Index and Similarity Index analyses confirm that ASFV strains are highly adapted to soft ticks (Ornithodoros moubata) but less so to domestic pigs, which could be a result of the long-term co-evolution of ASFV with ticks. This study sheds light on the factors influencing ASFV's codon usage and fitness dynamics, enriching our understanding of its evolution, adaptation and host interactions.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Ornithogalum , Animais , Suínos , Vírus da Febre Suína Africana/genética , Uso do Códon , Adaptação ao Hospedeiro , Filogenia , Sus scrofa
8.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165153

RESUMO

BACKGROUND: Understanding the genotype of pest species provides an important baseline for designing integrated pest management (IPM) strategies. Recently developed long-read sequence technologies make it possible to compare genomic features of nonmodel pest species to disclose the evolutionary path underlying the pest species profiles. Here we sequenced and assembled genomes for 3 agricultural pest gelechiid moths: Phthorimaea absoluta (tomato leafminer), Keiferia lycopersicella (tomato pinworm), and Scrobipalpa atriplicella (goosefoot groundling moth). We also compared genomes of tomato leafminer and tomato pinworm with published genomes of Phthorimaea operculella and Pectinophora gossypiella to investigate the gene family evolution related to the pest species profiles. RESULTS: We found that the 3 solanaceous feeding species, P. absoluta, K. lycopersicella, and P. operculella, are clustered together. Gene family evolution analyses with the 4 species show clear gene family expansions on host plant-associated genes for the 3 solanaceous feeding species. These genes are involved in host compound sensing (e.g., gustatory receptors), detoxification (e.g., ABC transporter C family, cytochrome P450, glucose-methanol-choline oxidoreductase, insect cuticle proteins, and UDP-glucuronosyl), and digestion (e.g., serine proteases and peptidase family S1). A gene ontology enrichment analysis of rapid evolving genes also suggests enriched functions in host sensing and immunity. CONCLUSIONS: Our results of family evolution analyses indicate that host plant adaptation and pathogen defense could be important drivers in species diversification among gelechiid moths.


Assuntos
Mariposas , Solanum lycopersicum , Animais , Mariposas/genética , Adaptação ao Hospedeiro , Controle de Pragas , Genômica
9.
Plant J ; 117(2): 516-540, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864805

RESUMO

Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.


Assuntos
Citrullus , Comamonadaceae , Cucurbitaceae , Adaptação ao Hospedeiro , Doenças das Plantas/microbiologia , Citrullus/genética , Aminoácidos
10.
J Glob Antimicrob Resist ; 36: 142-150, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128728

RESUMO

OBJECTIVES: This study characterized the resistome, mobilome and phylogenomic relatedness of Staphylococcus aureus strains previously obtained from healthy nestling storks (HNS), pigs (HP) and pig farmers (HPF) to analyse possible transmission pathways of S. aureus with implications for the spread of antimicrobial resistance. METHODS: The genomic contents of 52 S. aureus strains obtained from the nasal cavity of HNS, HP and HPF in Spain were sequenced using the Illumina NextSeq platform to characterize their resistome, virulome and mobile genetic elements. The relatedness of strains was assessed by core-genome single nucleotide polymorphisms (SNPs). RESULTS: The frequencies of multidrug-resistance phenotype and transposons were significantly lower in strains from HNS than in those from HP and HPF (P < 0.005). However, the presence of human immune evasion cluster genes in S. aureus strains from HNS was significantly higher than in those from HP and HPF (P < 0.005). Interestingly, the frequencies of plasmids and phages were not significantly associated with the host (P > 0.05). The phylogenetic analysis identified a cluster of all the MSSA-CC398 strains carrying φSa3 and ermT on rep13 separately from the two MRSA-CC398 strains (carrying ermT on repUS18). Highly related MRSA-CC398 strains were detected in some pigs and related farmers (<10 SNPs). CONCLUSION: This study confirms high-level antibiotic selection in S. aureus in HP and HPF in comparison to HNS. Furthermore, our findings highlight the continuous transmission of MRSA-CC398 in the pig-to-human interface and MSSA-CC398 with human adaptation markers in HNS. Molecular surveillance of S. aureus using the One Health model is required to establish appropriate control strategies.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Suínos , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Fazendas , Staphylococcus aureus Resistente à Meticilina/genética , Adaptação ao Hospedeiro , Filogenia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/epidemiologia , Aves , Genômica
11.
Sci Rep ; 13(1): 19343, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935795

RESUMO

Energy metabolism is a highly conserved process that balances generation of cellular energy and maintenance of redox homeostasis. It consists of five interconnected pathways: glycolysis, tricarboxylic acid cycle, pentose phosphate, trans-sulfuration, and NAD+ biosynthesis pathways. Environmental stress rewires cellular energy metabolism. Type-2 diabetes is a well-studied energy metabolism rewiring state in human pancreatic ß-cells where glucose metabolism is uncoupled from insulin secretion. The two-spotted spider mite, Tetranychus urticae (Koch), exhibits a remarkable ability to adapt to environmental stress. Upon transfer to unfavourable plant hosts, mites experience extreme xenobiotic stress that dramatically affects their survivorship and fecundity. However, within 25 generations, mites adapt to the xenobiotic stress and restore their fitness. Mites' ability to withstand long-term xenobiotic stress raises a question of their energy metabolism states during host adaptation. Here, we compared the transcriptional responses of five energy metabolism pathways between host-adapted and non-adapted mites while using responses in human pancreatic islet donors to model these pathways under stress. We found that non-adapted mites and human pancreatic ß-cells responded in a similar manner to host plant transfer and diabetogenic stress respectively, where redox homeostasis maintenance was favoured over energy generation. Remarkably, we found that upon host-adaptation, mite energy metabolic states were restored to normal. These findings suggest that genes involved in energy metabolism can serve as molecular markers for mite host-adaptation.


Assuntos
Adaptação ao Hospedeiro , Tetranychidae , Animais , Humanos , Tetranychidae/genética , Xenobióticos , Metabolismo Energético
12.
Microbiol Spectr ; 11(6): e0158823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37874174

RESUMO

IMPORTANCE: Difficult-to-treat pulmonary infections caused by nontuberculous mycobacteria of the Mycobacterium abscessus group have been steadily increasing in the USA and globally. Owing to the relatively recent recognition of M. abscessus as a human pathogen, basic and translational research to address critical gaps in diagnosis, treatment, and prevention of diseases caused by this microorganism has been lagging behind that of the better-known mycobacterial pathogen, Mycobacterium tuberculosis. To begin unraveling the molecular mechanisms of pathogenicity of M. abscessus, we here focus on the study of a two-component regulator known as PhoPR which we found to be under strong evolutionary pressure during human lung infection. We show that PhoPR is activated at acidic pH and serves to regulate a defined set of genes involved in host adaptation. Accordingly, clinical isolates from chronically infected human lungs tend to hyperactivate this regulator enabling M. abscessus to escape macrophage killing.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Mycobacterium abscessus/genética , Virulência/genética , Adaptação ao Hospedeiro , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mutação , Mycobacterium tuberculosis/genética , Concentração de Íons de Hidrogênio
13.
Fungal Genet Biol ; 169: 103838, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716699

RESUMO

Intimate associations between fungi and intracellular bacterial endosymbionts are becoming increasingly well understood. Phylogenetic analyses demonstrate that bacterial endosymbionts of Mucoromycota fungi are related either to free-living Burkholderia or Mollicutes species. The so-called Burkholderia-related endosymbionts or BRE comprise Mycoavidus, Mycetohabitans and Candidatus Glomeribacter gigasporarum. These endosymbionts are marked by genome contraction thought to be associated with intracellular selection. However, the conclusions drawn thus far are based on a very small subset of endosymbiont genomes, and the mechanisms leading to genome streamlining are not well understood. The purpose of this study was to better understand how intracellular existence shapes Mycoavidus and BRE functionally at the genome level. To this end we generated and analyzed 14 novel draft genomes for Mycoavidus living within the hyphae of Mortierellomycotina fungi. We found that our novel Mycoavidus genomes were significantly reduced compared to free-living Burkholderiales relatives. Using a genome-scale phylogenetic approach including the novel and available existing genomes of Mycoavidus, we show that the genus is an assemblage composed of two independently derived lineages including three well supported clades of Mycoavidus. Using a comparative genomic approach, we shed light on the functional implications of genome reduction, documenting shared and unique gene loss patterns between the three Mycoavidus clades. We found that many endosymbiont isolates demonstrate patterns of vertical transmission and host-specificity, but others are present in phylogenetically disparate hosts. We discuss how reductive evolution and host specificity reflect convergent adaptation to the intrahyphal selective landscape, and commonalities of eukaryotic endosymbiont genome evolution.


Assuntos
Burkholderiaceae , Adaptação ao Hospedeiro , Filogenia , Burkholderiaceae/genética , Fungos/genética , Bactérias , Simbiose/genética
14.
BMC Genomics ; 24(1): 530, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679681

RESUMO

BACKGROUND: Ligilactobacillus salivarius has been frequently isolated from the gut microbiota of humans and domesticated animals and has been studied as a candidate probiotic. Badger (Meles meles) is known as a "generalist" species that consumes complex foods and exhibits tolerance and resistance to certain pathogens, which can be partly attributed to the beneficial microbes such as L. salivarius in the gut microbiota. However, our understanding of the beneficial traits and genomic features of badger-originated L. salivarius remains elusive. RESULTS: In this study, nine L. salivarius strains were isolated from wild badgers' feces, one of which exhibited good probiotic properties. Complete genomes of the nine L. salivarius strains were generated, and comparative genomic analysis was performed with the publicly available complete genomes of L. salivarius obtained from humans and domesticated animals. The strains originating from badgers harbored a larger genome, a higher number of protein-coding sequences, and functionally annotated genes than those originating from humans and chickens. The pan-genome phylogenetic tree demonstrated that the strains originating from badgers formed a separate clade, and totally 412 gene families (12.6% of the total gene families in the pan-genome) were identified as genes gained by the last common ancestor of the badger group. The badger group harbored significantly more gene families responsible for the degradation of complex carbohydrate substrates and production of polysaccharides than strains from other hosts; many of these were acquired by gene gain events. CONCLUSIONS: A candidate probiotic and nine L. salivarius complete genomes were obtained from the badgers' gut microbiome, and several beneficial genes were identified to be specifically present in the badger-originated strains that were gained in the evolution. Our study provides novel insights into the adaptation of L. salivarius to the intestinal habitat of wild badgers and provides valuable strain and genome resources for the development of L. salivarius as a probiotic.


Assuntos
Ligilactobacillus salivarius , Animais , Humanos , Adaptação ao Hospedeiro , Filogenia , Galinhas , Aclimatação , Animais Domésticos
15.
Front Cell Infect Microbiol ; 13: 1228206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637465

RESUMO

Parasitic diseases pose a significant threat to global public health, particularly in developing countries. Host genetic factors play a crucial role in determining susceptibility and resistance to infection. Recent advances in molecular and biological technologies have enabled significant breakthroughs in understanding the impact of host genes on parasite adaptation. In this comprehensive review, we analyze the host genetic factors that influence parasite adaptation, including hormones, nitric oxide, immune cells, cytokine gene polymorphisms, parasite-specific receptors, and metabolites. We also establish an interactive network to better illustrate the complex relationship between host genetic factors and parasite-host adaptation. Additionally, we discuss future directions and collaborative research priorities in the parasite-host adaptation field, including investigating the impact of host genes on the microbiome, developing more sophisticated models, identifying and characterizing parasite-specific receptors, utilizing patient-derived sera as diagnostic and therapeutic tools, and developing novel treatments and management strategies targeting specific host genetic factors. This review highlights the need for a comprehensive and systematic approach to investigating the underlying mechanisms of parasite-host adaptation, which requires interdisciplinary collaborations among biologists, geneticists, immunologists, and clinicians. By deepening our understanding of the complex interactions between host genetics and parasite adaptation, we can develop more effective and targeted interventions to prevent and treat parasitic diseases. Overall, this review provides a valuable resource for researchers and clinicians working in the parasitology field and offers insights into the future directions of this critical research area.


Assuntos
Microbiota , Parasitos , Humanos , Animais , Parasitos/genética , Adaptação ao Hospedeiro , Citocinas , Óxido Nítrico
16.
Microbiome ; 11(1): 189, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37612775

RESUMO

BACKGROUND: The transition from water to air is a key event in the evolution of many marine organisms to access new food sources, escape water hypoxia, and exploit the higher and temperature-independent oxygen concentration of air. Despite the importance of microorganisms in host adaptation, their contribution to overcoming the challenges posed by the lifestyle changes from water to land is not well understood. To address this, we examined how microbial association with a key multifunctional organ, the gill, is involved in the intertidal adaptation of fiddler crabs, a dual-breathing organism. RESULTS: Electron microscopy revealed a rod-shaped bacterial layer tightly connected to the gill lamellae of the five crab species sampled across a latitudinal gradient from the central Red Sea to the southern Indian Ocean. The gill bacterial community diversity assessed with 16S rRNA gene amplicon sequencing was consistently low across crab species, and the same actinobacterial group, namely Ilumatobacter, was dominant regardless of the geographic location of the host. Using metagenomics and metatranscriptomics, we detected that these members of actinobacteria are potentially able to convert ammonia to amino acids and may help eliminate toxic sulphur compounds and carbon monoxide to which crabs are constantly exposed. CONCLUSIONS: These results indicate that bacteria selected on gills can play a role in the adaptation of animals in dynamic intertidal ecosystems. Hence, this relationship is likely to be important in the ecological and evolutionary processes of the transition from water to air and deserves further attention, including the ontogenetic onset of this association. Video Abstract.


Assuntos
Actinobacteria , Braquiúros , Animais , Brânquias , Ecossistema , Adaptação ao Hospedeiro , RNA Ribossômico 16S/genética , Bactérias/genética
17.
Commun Biol ; 6(1): 813, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542124

RESUMO

Insects have a limited host range due to genomic adaptation. Thysanoptera, commonly known as thrips, occupies distinct feeding habitats, but there is a lack of comparative genomic analyses and limited genomic resources available. In this study, the chromosome-level genome of Stenchaetothrips biformis, an oligophagous pest of rice, is assembled using multiple sequencing technologies, including PacBio, Illumina short-reads, and Hi-C technology. A 338.86 Mb genome is obtained, consisting of 1269 contigs with a contig N50 size of 381 kb and a scaffold N50 size of 18.21 Mb. Thereafter, 17,167 protein-coding genes and 36.25% repetitive elements are annotated. Comparative genomic analyses with two other polyphagous thrips, revealing contracted chemosensory-related and expanded stress response and detoxification gene families in S. biformis, potentially facilitating rice adaptation. In the polyphagous thrips species Frankliniella occidentalis and Thrips palmi, expanded gene families are enriched in metabolism of aromatic and anthocyanin-containing compounds, immunity against viruses, and detoxification enzymes. These expansion gene families play crucial roles not only in adapting to hosts but also in development of pesticide resistance, as evidenced by transcriptome results after insecticides treatment. This study provides a chromosome-level genome assembly and lays the foundation for further studies on thrips evolution and pest management.


Assuntos
Tisanópteros , Animais , Tisanópteros/genética , Adaptação ao Hospedeiro , Cromossomos , Genoma , Genômica/métodos
18.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511283

RESUMO

The exceptionally widespread outbreak of human monkeypox, an emerging zoonosis caused by the monkeypox virus (MPXV), with more than 69,000 confirmed cases in 100 non-endemic countries since 2022, is a major public health concern. Codon usage patterns reflect genetic variation and adaptation to new hosts and ecological niches. However, detailed analyses of codon usage bias in MPXV based on large-scale genomic data, especially for strains responsible for the 2022 outbreak, are lacking. In this study, we analyzed codon usage in MPXV and its relationship with host adaptation. We confirmed the ongoing outbreak of MPXVs belonging to the West Africa (WA) lineage by principal component analysis based on their codon usage patterns. The 2022 outbreak strains had a relatively low codon usage bias. Codon usage of MPXVs was shaped by mutation and natural selection; however, different from past strains, codon usage in the 2022 outbreak strains was predominantly determined by mutation pressure. Additionally, as revealed by the codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses, the codon usage patterns of MPXVs were also affected by their hosts. In particular, the 2022 outbreak strains showed slightly but significantly greater adaptation to many primates, including humans, and were subjected to stronger selection pressure induced by hosts. Our results suggest that MPXVs contributing to the 2022 outbreak have unique evolutionary features, emphasizing the importance of sustained monitoring of their transmission and evolution.


Assuntos
Uso do Códon , Adaptação ao Hospedeiro , Animais , Humanos , Vírus da Varíola dos Macacos/genética , Filogenia , Evolução Molecular , Códon/genética , Seleção Genética , Surtos de Doenças
19.
Plant Physiol ; 193(4): 2605-2621, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37437113

RESUMO

Composite generalist herbivores are comprised of host-adapted populations that retain the ability to shift hosts. The degree and overlap of mechanisms used by host-adapted generalist and specialist herbivores to overcome the same host plant defenses are largely unknown. Tetranychidae mites are exceptionally suited to address the relationship between host adaptation and specialization in herbivores as this group harbors closely related species with remarkably different host ranges-an extreme generalist the two-spotted spider mite (Tetranychus urticae Koch [Tu]) and the Solanaceous specialist Tetranychus evansi (Te). Here, we used tomato-adapted two-spotted spider mite (Tu-A) and Te populations to compare mechanisms underlying their host adaptation and specialization. We show that both mites attenuate induced tomato defenses, including protease inhibitors (PIs) that target mite cathepsin L digestive proteases. While Te solely relies on transcriptional attenuation of PI induction, Tu and Tu-A have elevated constitutive activity of cathepsin L proteases, making them less susceptible to plant anti-digestive proteins. Tu-A and Te also rely on detoxification of tomato constitutive defenses. Te uses esterase and P450 activities, while Tu-A depends on the activity of all major detoxification enzymatic classes to disarm tomato defensive compounds to a lesser extent. Thus, even though both Tu-A and Te use similar mechanisms to counteract tomato defenses, Te can better cope with them. This finding is congruent with the ecological and evolutionary times required to establish mite adaptation and specialization states, respectively.


Assuntos
Tetranychidae , Animais , Adaptação ao Hospedeiro , Catepsina L , Plantas , Evolução Biológica , Herbivoria
20.
Evolution ; 77(8): 1912-1913, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37306236

RESUMO

Does gene flow disrupt or facilitate the evolution of parasite resistance in host populations? Lewis et al. use a host-parasite system consisting of Caenorhabditis elegans (host) and Serratia marcescens (parasite) to test the effect of gene flow on adaptation. They find that gene flow from parasite-resistant host populations with divergent genetic backgrounds promotes adaptation to parasites (increased resistance). Findings from this study can be used to address more complex cases of gene flow and can be applied in conservation efforts.


Assuntos
Parasitos , Animais , Interações Hospedeiro-Patógeno/genética , Adaptação ao Hospedeiro , Fluxo Gênico , Evolução Biológica , Caenorhabditis elegans/genética , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...